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The statrstical properttes of maximum-length sequences generated by hnear-feedback shift 
registers are investtgated Two-dimensional bit patterns constructed from these sequences are 

found to exhibit charactertstic triangular structures, tn the simplest case conststing of trtangles 
of zeros supported by a backbone of ones. The size distrtbutton of these triangles is gtven, and 

the relatton wtth cellular automata IS pointed out. Randomness is defined m terms of the 

correlation functtons of any order Not only the pan correlatton function, but also all higher 
order correlatton functions are two-valued The number of correiatton functions of any order 

that devtate from randomness is determined exactly. All maxtmum-length sequences of the 
same length are found to be equally random in a strtct sense. although their suitabrlrty as a 

source of random numbers may doffer widely m dtfferent apphcations; longer sequences are 
more random. It IS concluded that extremely long maximum-length sequences, wtth pertods of 

up to ZMs9- 1, can in fact be used as reliable random-number generators for many purposes. 
Fast software or hardware programs for the production of these sequences are readi!> 
constructed ( 1987 Academtc Press. Inc 

1. INTRODUCTION 

Maximum-length sequences generated by linear-feedback shift registers are often 
used to produce the random numbers needed in simulation. In comparison with 
other deterministic methods of producing random numbers (undeterministic 
methods are unwanted because of their irreproducibiliry), they have two main 
advantages. First, the statistical properties of maximum-length sequences can be 
fairly well understood. Second, fast linear-feedback shift registers can be easily 
realized both in software and in hardware: only the logic exclusive-or operation is 
involved. For these reasons, maximum-length sequences generated by linear-feed- 
back shift registers were used in the special-purpose processors built in Delft by 
Hoogland ef al. [l] and in Santa Barbara by Pearson et al. [I] for the Monte- 
Carlo simulation of spin systems; these relatively inexpensive machines are very fast 
and can be operated days on end, swallowing in a single run typically 10” random 
numbers of 32 bits each, at a rate of 1 MHz or more. The demands of both speed 
and quality put on the method of generating the random numbers then are very 
severe indeed. 
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Maximum-length binary sequences and their main statistical properties arc 
described by Golomb [3], Hoffmann de Visme [4], and MacWilliams and Sloane 
[S]. More detailed studies of these properties, a great variety of statistical criteria 
to test them, and a large number of particular applications have been reported by 
Tausworthe [6], Lindholm [7], Tootill et al. [8, 91, Lewis and Payne [lOJ, 
Fredricsson [ 111, Miller and Mars [ 121, Arvillias and Maritsas [13], Kirkpatrick 
and Stoll [14], and many others. It is generally recognized that persistent 
deviations from pure randomness do exist in maximum-length sequences, although 
both the pair correlations between bits of the sequence and the number of runs of a 
certain size are almost what they should be for truly random bit sequences. The 
extent of these deviations from randomness is not clear, but many recipes have been 
suggested in the literature to reduce their influence, which depends on the particular 
linear-feedback shift register used, on the particular way in which the bits of the 
maximum-length sequence are combined to form a random number, and even on 
the particular problem that one wants to study with these random numbers. It is 
therefore important to develop a general point-of-view from which the nonrandom 
effects can be judged. 

Such a point-of-view is found here in the consideration of the complete hierarchy 
of correlation functions of any order. In terms of this hierarchy the concept of ran- 
domness can be fully understood; this follows from an application to the case of 
maximum-length sequences of a description given by Glauber [IS] for the 
hierarchy of correlation functions for the one-dimensional [sing model. (In fact, a 
maximum-length sequence can be considered as the ground-state of a particular 
one-dimensional Ising model, with an anisotropic Hamiltonian playing the part of 
the production rule.) Higher-order correlation functions for maximum-length 
sequences were considered earlier by Lindholm [7] and Fredricsson [ 111, whose 
results, which perhaps have received too little attention in the literature, are 
recovered and extended in this paper. 

To make this paper reasonably self-contained, in Section 2 we give a short survey 
of the basic properties of maximum-length sequences. Section 3 contains a large 
number of figures showing two-dimensional bit patterns obtained from maximum- 
length sequences; these bit patterns are found to exhibit triangular structures which 
indicate the presence of strong correlations between bits of the sequence and which 
are related to the triangular bit structures reported by Miller [I61 for the case of a 
particular type of symmetric tessellations and by Wolfram [17] for the case of 
cellular automata. We will then study, in Section4, the complete hierarchy of 
correlation functions of any order. Section 5 contains a discussion of the statistical 
properties of (relatively) small subsequences of a maximum-length sequence. 
Application to sequences with periods up to the truly maximum length of 29689 - 1 
bits is the subject of Section 6, which also contains a discussion. In the last section 
the main conclusions of this paper are drawn. 
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2. SURVEY AND DEFINITI~~~S 

In an abstract sense, a linear-feedback shift register of length H is a rule for the 
growth of a binary sequence (a,> from a seed of n bits ~1,. a?,..., u,,. This rule is 

II- 1 

u, = a ,+,+ C cJa,-, jmod2), 
J=l 

where the coefficients c, are either 0 or 1. The set of positive integers j < y1 for which 
cJ = 1 holds are the additional feedback positions and will be indicated by {.I),; if 
this set has m - 1 elements the register is called a (linear) r?z-bit feedback shift 
register. A i-bit feedback shift register would just be the cycling register which 
repeats the initial seed according to a, = a, _ ,I ; this is excluded by assuming that the 
set (jl is never empty. A linear-feedback shift register is completely specified by I: 
and the set [j}, that is, by the production rule R(n; {J)). 

Starting with i= n + 1, one finds the complete binary sequence by iterating 
Eq. (1 j, each time using the last n bits produced as the seed for the next bit. Since 
Eq. ( 1) can equally well be used to determine bit a, -,I if bits Q,-,, + , . u, -,~ + ?- .1 ci, 
are given, the sequence may also be produced backwards. The sequences produced 
by R(n; (j>) and R(n: {n-j:,) are each other’s reverse, if the initial seed is also 
reversed; these production rules and sequences are called conjugate. All sequences 
grown are periodic, with period p and Q,+~ = u,, because the intial seed must 
ultimately be reproduced, there being only 2” different seeds; the period p is equai 
to the number of different seeds contained in the sequence. All linear-feedback shift 
registers produce at least two sequences, one of which is the trivial all-zero sequence 
(with period 1) grown from the all-zero seed. If the linear-feedback shift register 
produces just two sequences, the other sequence is a maximum-length sequence, 
with period p = N = 2” - 1 and containing all N nonzero seeds. Maximum-length 
sequences can only be produced by shift registers with an odd number of additional 
feedback positions. The periods of all nonzero sequences produced by a linear-feed- 
back shift register always add up to N. As examples, R(4; 3) produces the 
maximum-length sequence 111100010011010 with period ,V = 2” - I = 15, and 
R(5; 4) produces the sequences 111110000100011001010, 1110100, and 110 with 
periods 21, 7, and 3 (adding up to N= 31). It is often convenient to study the 
equivalent sequence {b, > with b, = 1 - 2a, = + 1 instead of the sequence (a! i ;virh 
a, = 0, 1. The production rule of Eq. (1) for the sequence (b,) reads 

n-1 

b,=b,+,, n (l-c,+c,h,-,). (2) 
,=I 

In statistical mechanics the sequence {b,) could be mterpreted as the p-foid 
degenerate ground state of a l-dimensional Ising system of p spins b; = t_ 1 with a 
ferromagnetic (E > 0) multiple-spin interaction given by the Hamiltonian 

H= --E f b,b,_.‘rjj’(l-c,+c,b,+,). 
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A characteristic polynomialf(x) is assigned to R(n; (jl) by means of 

A necessary condition for the production of a maximum-length sequence by 
R(n; (j>) is that this polynomial of degree rz is irreducible (i.e., nonfactorable 
mod 2). When n is such that N= Y- 1 is prime (a Mersenne prime) this condition 
is also sufficient. The characteristic function of a maximum-length sequence can be 
shown to be essentially equal to the inverse of the generating function for that 
sequence; see, e.g., Golomb [3]. Lists of primitive polynomials that characterize 
maximum-length sequences have been given by Zierler and Brillhart [1X], Zierler 
11191, and Stahnke [20]. 

Golomb [3] showed that maximum-length sequences have three randomness 
properties, called Rl. R2, and R3 by him, which up to terms of order l/N agree 
with what one would expect for truly random sequences. They are: (RI) A period of 
a maximum-length sequence contains $N+ 1) ones and +(N - 1) zeros. (R2) The 
number of runs of i ones (sandwiched between two zeros) or i zeros (sandwiched 
between two ones) within a period is 2n-r-Z for 1 < i < n - 2; in addition, there is a 
single run of N - 1 zeros and a single run of IZ ones. (R3) The pair correlation over 
the period is given, in terms of the sequence (6,}, by 

c,(j)+ f b,b-+/= -;+ l+$- 6,j, 
,= I ( > 

where Kronecker’s d-symbol is used. 
To complete this summary, we recall the “cycle-and-add” property of maximum- 

length sequences: for any k # 0, there is always an integer s such that 

a lfS =a,Oai+k and blis= brbrtk (5) 

hold for all i; see, e.g., Golomb [3] and Hoffmann de Visme [4]. A closed 
expression for s as a function of k (and of the parameters n and {j> of the shift 
register) does not exist; a numerical strategy for the determination of s is given by 
the “remote-term calculation” described by Hoffmann de Visme [4]. The cycle-and- 
add property is perhaps the most fundamental property of maximum-length 
sequences; it immediately explains randomness property R3 in terms of Rl, and it is 
at the basis of much of our findings in this paper. 

By repeatedly sampling q bits from a maximum-length sequence one can form a 
sequence of q-bit numbers which, usually after reduction to the interval (0, l), can 
be used as the random numbers needed in the Monte-Carlo or other stochastic 
process one is interested in. Different sampling schemes have been suggested for the 
q-bit random numbers, and a variety of statistical criteria have been applied to 
verify the randomness of the q-bit numbers obtained or to study randomness 
properties of the maximum-length sequence that go beyond Rl, R2, and R3 cited 
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above. Useful recipes have been given for the selection of the most suitable hnear- 
feedback shift registers. See, for details, the references given in Section 1. Some 
general comments on these subjects will be made in Section 6. 

3, BIT PATTERNS OF MAXIMUM-LENGTH SEQUENCES 

Complete chaos is difficult to achieve. Just how dtfficuh, in the case of maximum- 
length sequences, will appear when we emphasize the intrinsic regularities induced 
by the deterministic production rule by arranging the sequences on a quadratic 
lattice. 

Consider a row of bits consisting of many periods of a given maximum-length 
sequence a I, u7...., a,,, Add identical rows below (above), each time shifting them 
over s positions to the left (to the right, respectively), such that a bit pattern on a 
square lattice results. A column contains the bits a,, n, + s, u, _ ?, ,.... sampled from the 
sequence. If s and IV= A 7” - 1 have no common divisor, the decimation runs :n 
a cyclic manner (i.e.. mod IV) through the entire sequence before repetition occurs: 
the decimated sequence is again a maximum-length sequence (see Colomb [3 1;. If 
N is prtme, the bits along any rational direction in the bit pattern again form a 
maximum-length sequence. Conjugate shift registers generate upside-down. bit 
patterns. 

The bit patterns thus produced have a rhomboidal symmetry, wtth unit cells that 
are N unit squares large. Instead of these rhomboidal unit cells it is more con- 
venient to consider tiles with edges that have horizontal or vertical parts only. Tiles 
cannot be defined uniquely, but in a given tessellation they should all have the same 
shape and orientation. and they should cover the square lattice completeiy. Each 
tile should contain all the elements of {n,) just once; equivalent positions on drf- 
ferent tiles are to be occupied by the same element. An obvious choice, possible for 
any value of s and leading to a “brickwork” tessellation, would be to take just N 
subsequent bits on a row as tile: for most values of s more compact shapes can be 
chosen. 

Certain special (though not mutually exclusive) values of s deserve attention. 
First consider the situation in which for some simulation q-bit random numbers 
(not all q bits need to be relevant in the simulatton) are extracted from the 
maximum-length sequence by taking successive subsequences of q bits. ere, q Q II 
should hold in order to ensure that all q-bit random numbers occur frequently dur- 
ing a period of the sequence. The construction rule of the sequence implies that $1 
subsequent bits of the sequence are independent; therefore, if 171 is the largest Integer 
for which mq <II holds. the closest pair in the generated list of q-bit random num- 
bers that might show correlation is separated by WI - 1 places in that list. An inspec- 
tion of the bit pattern that results for s = mq can provide a first indication abou; the 
existence of this correlation. 

Second, by taking s = n one obtains a bit pattern which contains successive parts 
of ~2 bits of the sequence on successive rows of any n-bit wide column. A convenient 
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tile shape in this case would be a rectangle of ~1 bits wide with a length of 
ent(l\iln) $ 1 bits, from the last row of which, in the lower right-hand corner, a 
number of unit squares is missing. The indentation just accomodates the upper left- 
hand corner of a neighboring tile (see some of the figures). 

Third, one can take s such that intrinsic regularities of the sequence are accen- 
tuated. The cycle-and-add property of Eqs. (5) tells us that there is always an 
integer a( 1) such that a, + ac,, = a, 0 a, + , holds for any i (the general meaning of 
a(d) will be explained below). Therefore, if one chooses s = Q( 1) a bit pattern results 
in which every bit is the mod-2 sum of the bits immediately “north” and “north- 
east” of it. 

In Fig. 1 the bit pattern resulting from the production rule R(4; 3) with 3 = +I = 
C$ 1) = 4 is shown (for all production rules R(n; n - 1) the equality a( 1) = n is valid); 
a possible tessellation is indicated. Each row in this figure is one period of the 
maximum-length sequence (ones are represented by black dots and zeros by open 
circles). Below the run of 4 ones a run of 3 zeros occurs, followed by runs of 2 and 1 
zeros on subsequent rows. Thus, a base-3 triangle of zeros is formed; in addition, 
each tile contains an isolated zero, a “base-l triangle.” In Figs. 2 and 3 tiles are 
shown of the tessellations due to the production rules R(7; 6) and R(7; 4), with 
s = C( 1) = II = 7 and s = a( 1) = 31, respectively. The tiles are chosen for their con- 
venient shape. The position of neighboring tiles is indicated, as is the collection of 
triangles of zeros. Figure 4 shows an arbitrary part of the bit pattern produced by 
the production rule R(72; 66,25, 19) with s = g(1). (All production rules used as 
examples here and in the sequel generate maximum-length sequences.) For the case 
of Fig. 4, the numerical value of a( 1) is not known, but this does not prevent us 
from placing the mod-2 sum of the pair below the left bit of each pair of neighbor- 
ing bits in a row. Figure 4 contains 128 x 128 bits and is an extremely small fraction 
(1/258) of the complete tile for this case. 

Looking at these figures one would hardly believe that some maximum-length 
sequences are among the best pseudo-random binary sequences. The triangular bit 
structures observed, consisting of triangles of zeros supported by a backbone of 
ones, are a direct manifestation of the nonrandom higher-order correlations that 
exist within maximum-length sequences. 

FIG. 1. The bit pattern resultmg by repeatedly copying, after a shift over s=4 places, the ISbIt 
maximum-length sequence generated by R(4; 3 ). In this case, one has s = v( 1) = n. Black dots correspond 
with 1, open circles with 0. A possible tessellation is indicated, as are triangles of zeros. 
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FIG 2. A tile of a tessellation due to productron rule R(7: 6) with s = o( 1) == 7. The positlor, of other 

tries 1s indicated. At A, a triangle of zeros crossmg the tile bouadary is seen 

The exact triangle distribution T(n, M), defined as the number of base-n2 triangies 
of zeros per tile in the bit pattern with shift s = a(1 ) generated by a maximum- 
length sequence with period Nr 2” - 1, is easily obtained. A base-lx triangle con- 
sists of one run of IIZ zeros (the base), followed on the next row by a run of JR- 1 
zeros, and so on; along the border of the triangle ail nearest-neighboring bit 
positions on the square lattice are occupied by ones. The total number of zeros in a 
base-m triangle is @(PI + 1). The complete collection of triangles of zeros in a 
single tile must accomodate all runs of zeros that occur in a period of the 

B ‘6’ 

Frc;. 3. The same as Fig. 2, but for R(7; 4) with s = u( 1) = 31 Several triangles of zeros cross ttie tile 
boundary. 



398 COMPAGNER AND HOOGLAND 

FIG. 4. An arbitrary part of 128 x 128 bits (i.e., l/- T5* of a complete tile) of the bit pattern generated 

by R(72; 66, 25, 19) with s=g(l). Black squares correspond with 1, white squares with 0. The dis- 

trlbutlon of triangles of zeros observed in this part is within normal statistical fluctuations equivalent 
with the dlstnbution for the complete tile. 

maximum-length sequence; the number of these runs is given by randomness 
property R2. From these observations the triangle distribution follows immediately: 

T(n,nzj= 1 
I 

2n-m-3 for Otmcn-2, 
for m = n - 1, (6) 

0 for m=n-2andm>,n. 

This distribution is the same for all bit patterns with s=a(l) obtained from any 
maximum-length sequence with period N. One easily verifies that the examples 
given in Figs. 1,2, and 3 obey this distribution, and that the number t(n, I) of runs 
of 1 zeros (sandwiched between ones) indeed is given by 

, I  

f(rz, ,)= 1 T(n, m) = 
{ 

2n-l-2 for l<fl-2, 

m = I 1 for I=n-1, 
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in agreement with randomness property R2. The actual distribution of triangies 
found in Fig. 4 agrees within normal statistical fluctuations with the distribution 
obtained by multiplying (6) with the ratio 2Ls8 between the part shown in Fig. 4 
and the complete tile, This is a strong indication that properties observed over 
relatively small parts of the bit pattern converge in a uniform manner to the proper- 
ties valid for a complete period of the maximum-length sequence, that is, for a com- 
plete tile. 

The above can be generalized by noting that any mod-2 linear combination of :I 
subsequent (and therefore linearly independent) bits of the sequence can be 
expressed as a single bit of the sequence: 

where the coefficients d, are either 0 or 1, except do which is always 1, and where 
a(a holds. (The restriction k <I? is not really necessary; however, when this 
restriction is removed, the right-hand side of Eq. (8) will become zero for particular 
choices of the indices k for which dk = 1, namely for thle dependent subsets defined 
m the next section.) The quantity a(d) will be called the correlation distance; rt 
depends on the coefficients dk and on the parameters (II: (jj) of the production 
rule, but not on i. The integer d is a short-hand notation defined by 

Alternatively, the set of coefficients will be indicated in binary notation by 

(d~)=(ld,d,-d,i: i ‘101 

where d, with id II -- 1 is the last coefficient that is not zero. For d = 0, one has 
{dkj=(l) and o(O)=O. For d= 1 one has {dk) =(ll) and a,+.,,,=a,@a,+,, in 
conformity with our earlier usage. As a last example, for u’= 5 one has (tl,1 = 
(1101) and ~,+,,s,=~,O~,+,O~,+,. 

Equation (8) is an immediate consequence of the cycle-and-add property, used 
repeatedly. The value of o(d) can be determined in principle by means of numericai 
techniques such as the remote-term calculation described by Hoffmann de Visme 
[4]; in practice, it can only be determined for relatively short shift registers 
(hrs 25, say}. In general, the behavior of o(d) is rather erratic. 

From a given maximum-length sequence many different bit patterns exhibiting 
triangular structures can now be produced by taking s = I for different values of 
d. Not only triangles of zeros appear, but also triangles of ones, and even stranger 
animals such as “checkerboard” and “zebra” triangles; of course, type and shape of 
the triangles depend strongly on d. We will give a few examples. 

In Fig. 5 an arbitrary part of the pattern produced by R( 127; 112) with s = a(3) is 
shown; the numerical value of o(d) is not known, but Ihe pattern is found by using 
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FIG. 5. An arbitrary part of the bit pattern generated by R(127; 112) with x=0(3). Each bit 1s the 

mod2 sum of the bit above it and the nearest and the next-nearest neighbor to the right of that bit. 

Therefore, the value of s does not need to be known explicitly in order to construct the bit pattern. 
Notice the presence of white, black, and “checkerboard” triangles. 

the relation (li+~(3)=a,0a,+,0a,+,. In general, in patterns with s = a(3), every 
row of the triangles of zeros and of ones that appear is two bits longer than the row 
below; the total number of bits in a base-m triangle is $(IB + 1)2 if m is odd, and 
im(m + 2) if m is even. Per tile, the distribution is now 

T(rz, m) = 3 x 2’r-mmp4 for O<m<n-3, (11) 

which holds both for triangles of zeros and for triangles of ones; in addition, there 
are two base-(n - 3) triangles of ones, one base-n triangle of ones, and three 
triangles of zeros with bases n - 3, n - 2, and n - 1, respectively. The distribution 
follows trivially from the observation that the collection of triangles of ones and of 
zeros must accomodate precisely the collection of runs of ones and of zeros given by 
randomness property R2. The distribution found in Fig. 5, which samples only a 
small part of the complete tile for R( 127; 112), obeys Eq. (ll), within normal 
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statistical fluctuations: this indicates again that properties valid for a complete tile 
are already observed in a small part of that tile. In Fig. 5, also “checkerboard”’ 
triangles appear. Their distribution is easily found: for no <n - 3, the number of 
base-m checkerboard triangles is precisely twice as large as the number of base-r?? 
triangles of ones or zeros. In bit patterns produced with s = (r(2) triangles of zeros 
are the main feature; their distribution again obeys Eq. ( 11). 

Wolfram [ 171 studies bit patterns produced from a disordered first row of bits 
by a great variety of Boolean construction rules; his rules 90 and 150 happen to 
coincide with our procedures for s = o(2) and s = a(3), respectively. In both cases, 
he finds the numerical estimate T’(m) z c/l-“’ with 1 w  2 for the density Tl(~ii of 
base-/R triangles of zeros. This agrees with the density T(m) = r(t?, nl)+V’= c 2 -I” 
obtained from Eq. (11); the proportionality constant is c = 3.2”-‘,!N, which for 
large n is almost equal to A. The agreement is due to the fact that unbiased drs- 
ordered binary sequences must also obey randomness property R2, at least in 
average; or, the difference between the bit patterns obtained by Wolfram and by us 

FIG. 6. An arbitrary part (containmg 128 x 128 bits) of the bit pattern generated bjr R( i35, 12-l-1) wtth 

q= crl: 10). Bit I on row j is now the mod 2 sum of bits i, I + 2. and I + 4 on row I- 1. Triangles of zeros 
and of ones are still present. as are “zebra” triangles, but the shape of these trlangies 1s rather narroa 

no\+ Subsequent rows of the pattern belong to very different parts of the maxlmum-iength seqxr:ce 
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FI c. 7. An arbitrary part (127 bits wide, 200 bits long) of the bit pattern generated by R( 127; 64) 

with s=n=l27. Blti on rowj is the mod2 sum of bits I and i + 63 on row I- 1. The interference 

bet\l ieen the initial condition (127 alternatmg bits OIOI...) and the production rule leads to triangular 
supe :rstructures that only decay slowly. 

‘cnnnnn 
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disappears when the shift register employed has more positions than can be 
accomodated within the linear dimensions of that part of the generated tile that is 
considered. It may be noted that maximum-length sequences are indeed a perfect 
example of the self-organizing and self-replicating automata considered by 
Wolfram. 

In Fig. 6 we give a further example, now for R( 135; 124) with a shift s = cr(d) per- 
taining to d= 10. For larger values of d, the triangular structures tend to become 
less conspicuous, but the underlying correlations are still present. Of course. when 
the maximum-length sequence is used to generate random numbers, correlations 
over distances cr(d) are less harmful when o(d) is larger and/or when d indicates 

more complicated collections of bits. For many values of d the correlation distance 
a(d) may easily be larger than the length of the subsequence from which the ran- 
dom numbers are taken. Therefore, the bit patterns presented with s = CT(~) # t7 

exaggerate the importance of long-distance correlations. On the other hand, the 
production rule itself always gives rise to a correlation distance a(d) = n for a value 
of d which corresponds to the feedback positions. In particular, two-bit feedback 
production rules R(n; k) with k close to tz or 0 (these cases are conjugate) or clcse 

to simple fractions ($, $...) of tz will not have satisfactory randomness properties. An 
example is shown in Fig. 7, which shows part of th’e bit pattern generated by 
Rf127;64j with S=CT(, T6’) = tz. The triangular “superstructure” observed in that 
figure is caused by an interference between the intrinsic symmetry of the initial con- 
dition used (as seed the alternating sequence OlOl... was taken) and the production 
rule; such interferences may result in a comparatively slow decay of the influence of 
the initial condition. For “random” seeds, the superstructure disappears and the 
decay to a uniform pattern of small triangular structures is much faster. 

The bit patterns clearly demonstrate the existence of nonrandom correlatrons 
between the bits of a maximum-length sequence. The main question is, to what 
extent these correlations do destroy the random character of maximum-~~~gt~ 
sequences. How random are maximum-iength sequences7 A precise and rather 
satisfactory answer to this question can be found by considering all higher-order 
correlation functions. 

1. TI-IE COMPLETE HIERARCHY OF CORRELATION FUNCTIONS 

Consider an ensemble of binary sequences {b,: = b, , !I-.,..., b,%, with b, = f 1. For 
the moment, these sequences need not be maximum-length sequences, but they are 
supposed to be periodic: b, + ,,, = b,. The ensemble is defined by the probability dis- 
tribution y( I b,)) 9 0 with < 
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Let (k,} = k,, k2 ,..., k,,, be a subset of order m of the indices i= 1, 2 ,..., N (this is 
tantamount to a subset of the sequencej with 

l,<k,<k>< ... <k,,,<N. 

This subset defines a product of elements from the sequence, 

(13) 

f’((k,); {W- fi 6,. 
J=l 

The expectation value of this product over the ensemble is 

(14) 

CdV#- 1 Nb$,l; (b,)) d(k)). 
jb,) 

(15) 

Summing these expressions over all possible choices (including the empty set) for 
(k,) one finds 

1 P((k,:; (b,))= fi (1 +b,), 
141 r=l 

(161 

(17) 

where p( (1)) is the probability of the sequence with b,= 1 for all i (for all other 
sequences, at least one of the factors I+ 6, that occur in Eq. (16) is zero). We will 
assume that the ensemble is translationally invariant, such that 

db,, b,, I>..., b,+N-,)=pib,,bz,...,b,~j (18) 

holds for i = 1, 2,..., N. Then, C,( {k,}) depends only on the KV- 1 differences k, - k, 
with j = 2, 3,..., yn, and is identical with the usual &h-order correlation function. 

If the sequences (bi} are the result of tossing an ideal coin N times (head = + 1, 
tail = - I), all sequences are equally probable: 

_ The correlation functions then obey 

except for the empty subset {k,] =0 with 172 =O, for which C,(O)= P(0; {b,))= 1 
holds, in agreement with Eq. (17). 

Equation (20) is not only a necessary condition for the validity of Eq. (19), it is 
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also sufficient. To show this, we repeat a derivation given by Giauber [15j for the 
case of the time-dependent l-dimensional Ising model; if in this model we suppress 
the time-dependence by taking the temperature equal to zero, it becomes identical 
with our description of binary sequences. We start from a particular representation 
of Kronecker’s &symbol in this case, i.e., from the relation 

i( 1 + b,b:) = 
0 if b,#b;, 

1 if b, = b;, 

which always holds for b,, b: = 5 1. We may therefore write 

Expanding the product we get 

Use of Eqs. i 14) and ( 15) leads to 

pi(&) ,=T;t(- c P({k,;; (b,)) C,.+,) ). 

(2i j 

which equation is generally valid; it expresses the probabilities in terms of the 
correlation functions and thus is the inverse of Eq. ( 15). 

For truly random sequences, all correlation funstions except C,\(O) must vanish 
identically; in the summation over {li,} in Eq. (24) only the empty set survives. and 
one is led back to the coin-tossing ensemble of Eq, (19 j. Therefore, Eqs. (19) and 
(20) are completely equivalent and provide a precise definition of randomness for 
binary sequences. Randomness can never be a property of a single sequence but can 
only be attributed to the coin-tossing ensemble. 

We now concentrate on maximum-length sequences (b,]. developed from a seed 
b,, b,,.... b,, = + I (not all equal to 1) by means of a production rule given by 
Eq, (2). As before, we have N= 2” - I. The ensemble will now consist of ail 3 
sequences grown by the same production rule from the IV different initial seeds that 
are possible; that is, the ensemble contains, in addition to a given maximum-length 
sequence, just all translated versions of that sequence. The probability distribution 
is 
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where {h;) is a particular sequence of the ensemble, say the one developed from the 
seed 6: = - 1 for i = 1, 2 ,..., IZ. The correlation functions are now given by 

where the prime is dropped again. 
Because of the production rule of Eq. (2), any general element of the sequence 

can be written as a product of preceding elements of the sequence. By iterating the 
process, every element of the sequence can ultimately be expressed as a product of 
factors chosen from b, , b?,..., b,,. When, during the process, the same element 
appears twice as a factor it disappears altogether (bf = 1). Different elements are 
expressed as different products, of which there are precisely N= 2” - 1 (the empty 
product does not appear). We may write 

b, = fi b,“i, 
/=I 

(27) 

where the exponents eJ are either 0 or 1 (not all zero). The exponents CI, together 
form an n-bit binary number: there is a one-to-one correspondence between this 
number and i. 

To give an example, we show in Fig. 8 a single tile of the bit pattern produced by 
R(5; 3) with s= a( 1) = 18, in its general form; for the purpose of the figure we put 
6, = a, b2 = 6, b3 = c, 6, = d, and 6, = e. Because N= 31 is prime, not only the 
horizontal but also every other rational direction in the bit pattern leads to a 
maximum-length sequence; for two of these directions the production rules are 

Seq”t?“Cl3 
poskms 
on the tile: 

19 20 21 22 23124 

FIG. 8. A smgle tile of the bit pattern produced by R(5: 3) with s=o( 1) = 18. The 5 seed bits 

b,,.... bj = k 1 are indicated by a, 0, c, d, r. Part B of the figure indicates where the elements of the 
sequence are located on the tile. In this case, N is prime; therefore, any rational direction in the pattern 
corresponds with a maximum-length sequence. A few alternative production rules are indicated. 
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indicated. For clarity, part B of the figure indicates in what order the bits of the 
sequence cover the tile. In part A one immediately recognizes that due to the choice 
s = g(l), every element is the product of the elements “north’ and “north-east” of it, 
taking into account that 6’ = 1. This, of course, is equivalent to the mod-2 silm- 
mation in terms of the sequence {a,] with a, = 0, 1. All different nonempty products 
of factors chosen from a, b, c, cl, and e appear. It is evident how, in terms of (a, 1 I 
triangles of zeros are produced in this bit pattern. It is also evident that many other 
combinations of bits can be selected which are highly correlated although this is not 
conspicious in the bit pattern. For instance. the product of b, = a, b, = hd, and 
hT8 = abd is always 1, but their geometrical relation in the bit pattern is weak 

Consider now the product defined in Eq. (14). Because of Eq. (27) we have 

where the exponents PI can be 0, 1,2,..., but again because of bf = 1 we may assume 
that /II is either 0 or 1. A subset {k,} for which /I,= 0 holds for all 1 will be called a 
dependent subset. For a dependent subset one has P( {k,j; {E,) ) = 1. Because of the 
translational invariance of the production rule, a subset [k, + i). which is a trans- 
lation over i positions of a dependent subset [k,} is again a dependent subset. This 
follows also from the fact that we did not specify the seed b,, h7:..., b,,. As a con- 
sequence, the correlation function of a dependent subset is always equal to I. 

When one or several exponents PI are equal to 1, the subset (k,) is called 
independent. Now the product of Eq. (28) can take the values k 1. In fact. the 
product of Eq. (28) is equal to a particular element b, of the sequence, according :c 
Eq. (27); the value of i depends on which exponents ,DI are equal to 1. This foilows 
also directly from a repeated use of the cycle-and-add property. The correlation 
function pertaining to an independent subset is therefore the average value of b, 
over the ensemble, i.e., the average value of the elements of the sequence. Sur- 
prisingly enough, we thus obtain the result 

if {k, j is dependeni, 
if (k,) is independent. 

I ‘7 ti 
1-f i 

The correlation functions of third and higher order are two-valued, just like the pair 
correlation given by Eq. (4). However, in our present terminology the pair 
correlation is single-valued; the case j = 0 in Eq. (4 j refers to the empty set rather 
than to a subset of size 2. There are no dependent subsets of size I or 2. The result 
of Eq. (29) was obtained before by Fredricsson [ 111 in a more formal manner. 

A natural question to ask now is, how many subsets jk,] are dependent. We 
define A ,Jm) as the number of independent subsets {k,} of order PJZ that can be 
taken from the elements of the maximum-length sequence and B,,(M) as the num- 
ber of dependent subsets of order ~JZ. One easily verifies that the following relations 
hold: 
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A,(m) + B,(m) = ,” ) 
0 

A,v(m)=A,(N-m), B,(m) = B,(N- m), 

A4,~(0j=.4~,(N)=0, B&,(O) = B,.(N) = 1, 
(30) 

A,(l)=A,v(N-l)=N, B,v(l)=B,(N- l)=O. 

We will first derive a recurrence relation for .4,V(nz) and B,(m). 
Consider the A,(m) independent subsets (k,) or order nz. A certain number of 

these subsets consist of a dependent subset of order m - 1 plus one extra element. 
This number is the product of B,,,,(m - 1 ), the number of dependent subsets of order 
m - 1. and the number of different choices, N-m + 1. that one can make for the 
additional element. Therefore, the number of independent subsets of order nz that 
do not contain a dependent subset of order m- 1 is .4,(m) - 
(N-m + 1) B,v(tn - 1). Given such a “doubly independent” subset of order m, one 
can always find precisely one element of the sequence which makes the doubly 
independent subset of order nz into a dependent subset of order m + 1. This element 
is not already contained in the subset of order m, since a dependent subset of order 
m + 1 that would contain two identical elements would necessarily contain a depen- 
dent subset of order m - 1, contrary to the fact that the subset of order m is doubly 
independent. Finally, every dependent subset of order m + 1 can be formed in WI + 1 
ways from an independent subset of order m. Thus we find 

B,“(rn + 1) = ~[n,(,,,)-(N--nl+l)B,(nl-l)]. 

Using the first of Eqs. (30) we get the recurrence relation 

(32) 

This equation can be solved by means of the generating function 

G(x) EE i A,(m) .Y”‘. (33) 
,I = 0 

Multiplying Eq. (32) with x”‘, summing over rn, and taking some extra care at the 
boundaries of this summation, one finds that G(x) must obey the following first- 
order linear differential equation: 

(I-.r’)-$G(x)+(l+N~)G(s)=N(l+s)“. (34) 
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The solution is 

G(x) =A (1 +x) ~I.2~IN~l~[(~+~~)~l2~~~+1i~(~~~)Il?~l.~+Il~~ ;35) 

in which a constant of integration was determined from G(O I = A ,,(Oj = 0. Using a 
binomial expansion for the difference in square brackets (odd powers of s vanish) 
and multiplying with the expansion for (1 + ?c)(“~)‘-~- ” one obtains 

Rewriting Eq. (35) in the form 

G(x) =& r(1+x)~‘-(1-.~)(1-s”)““““~l’3, (3-l) 

and using the binomial expansions for the two terms one obtains 

for j = 0, 1, 2 ,..., $(N- 3). These expressions are equivalent with Eq. (36). which 1.5 
more compact but calculationally less convenient. Closed expressions for B\(t71j 
follow straightforwardly: 

m even, 

(33) 

m odd. 

Both A y(fn) and B,V(m) contain a certain amount of redundancy, because trans- 
lated subsets are counted separately although they lead to identical correlation 
functions. When N is prime, a subset of order nz and its translations form a group 
of N elements, and the number of different mth-order correlation functions that 
take the value - l/N is A,(m)/N, whereas the number of those that take the vaiue 1 
is B,(m)/N; the only exceptions are m =0 and m = N. This is an application 
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of Fermat’s so-called little theorem. When N is not prime, there are for any m that 
divides N always certain symmetric subsets of order m which are invariant under 
translations over only N/m positions. The number of different correlation 
functions could then be counted by means of Polya’s enumeration theorem (see, 
e.g., Harary [21]), but this counting problem is largely irrelevant here, if only 
because the number of these symmetric subsets for large N is a vanishing fraction of 
the total number of mth-order subsets. 

The total numbers of independent and dependent subsets of any order are given 
by 

(40) 

For large values of N, the second terms on the right-hand side in Eqs. (38) can be 
neglected; one has 

(41) 

The total number of independent subsets is therefore always exactly N times larger 
than the total number of dependent subsets; asymptotically, this ratio also holds for 
every value of m separately. 

For the sum of all correlation functions we find 

c C,d(k,))= % [A..(m)-( -$+f&(n7). l]=O, 
ik,l m = 0 L 

in agreement with Eq. (17) because p( (1) 
ces. The average absolute value 

) = 0 holds for maximum-length sequen- 

(43) 

of all correlation functions can be used as a measure for the total amount of non- 
randomness. For a completely ordered sequence (either hi = 1 or b, = - 1 for all i) 
one has r= 1; in fact, r= 1 holds for all ensembles that contain a single binary 
sequence only. For an ensemble consisting of the two sequences of alternating + l’s 
and - l’s one finds r= f. For a truly random sequence (described by the coin-toss- 
ing ensemble) one has I-= 2 -,‘; a small but nonzero value which is solely due to 
the contribution of the trivial empty set ,k,, ’ 1 = 0. For the translationaliy invariant 
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ensemble consisting of a maximum-length sequence and ail its translated versions 
one finds 

which is already quite small for maximum-length sequences produced by shifz 
registers of moderate length; however, this should not be taken to imply that such 
sequences are already sufficiently random. The fact that according to Eq. (441 
dependent and independent subsets contribute equally to I‘ is somewhat misleading 
also. In fact. the dependent subsets are much more detrimental to the randomness 
properties of the sequence than the independent ones. 

The quantity $ can be compared with the more conventional measure for the 
amount of randomness, the entropy 

SE - 1 p({6,))lny([h,J-i. (45) 
; h, I 

One easily finds that the relation S = - In I- holds for an ensemble consisting of a 
smgle binary sequence, for the ensemble consistmg of the two alternating sequences, 
and for the coin-tossing ensemble. For the ensemble consisting of a maxrmum- 
length sequence and all its translated versions one finds S = Bn A’= in(?” - 1). which 
differs slightly from -In r given by Eq. (44). Neither r nor S does justice to the 
details of maximum-length sequences and their randomness propertres. 

Nevertheless, Eqs. (38)-(44) provide part of an answer to the question posed at 
the end of Section 3. In terms of the hierarchy of correlation functions. ail 
maximum-length sequences with the same period A are equally random. The we& 
known and rather trivial statement that longer maximum-length sequences are 
more random is now seen to reduce to two precise properties: (1) ail correfatior 
functions of independent subsets have - l/N as valuer (3) all correlation functions 
of dependent subsets are equal to I. but their relative number x B,,dmj:'2" vanishes 
as I:‘N (asymptotically. this holds for each subset order 07 separately). 

5. SUBSEQUENCE AVERAGES 

All maximum-length sequences of the same period may be equally random, but 
some are more random than others when only part of the sequence is considered. 
To explain this we introduce the partial correlation functions 

for M< N. There is no restriction on the subset (k,j, though of course those with a 
small distance between k, and k,,, the first and the llast element of the subset, are 



412 COMPAGNER AND HOOGLAND 

most relevant, in particular when m is also small; correlations between the elements 
of small-distance low-order subsets can be most detrimental to the randomness 
properties. 

For dependent subsets l/c,> one has immediately C,( (k,c,>) = 1. We have seen 
that the total number B,,,(IH) of dependent subsets of order m is relatively small 
compared with (c), but is the same true for the number 5,M(m) of dependent sub- 
sets of order m taken from a subsequence of length M in comparison with (E)? 
Because of translational invariance, Bn,(m) depends on the length of the sub- 
sequence, but not on its location in the full sequence; in contrast with B,(m), it 
does depend on the details of the production rule. 

The general structure of B,(m) is best described by giving a simple example: in 
Table I its nonzero values obtained by numerical examination for the case of 
production rule R(4; 3) are shown (5,,f(0) = 1 and B,,( 15) = 1 were omitted). The 
last row in this table obeys Eq. (39). The following simple relations, valid for all 
production rules, are easily proven: 

BIGI = 1 for all M, 

5,(1)=5,(2)=0 for all M, 
(471 

B‘+f(/77) = 0 for O<Mdn and m#O, 

5&,f(172) = 0 for in2 A4 and MZO, N. 

For instance, B,<(M) = I would imply that any M subsequent elements from a 
dependent subset; a shift of this subset over one position yields 6, + I = b, for all i, 
which means that either M = 0 or A4 = N holds. 

TABLE I 

The Nonzero Values of B,,,(m) for Production Rule R(4; 3) 

\ltn 3 4 5 6 1 8 9 10 11 12 

A4 \, 

5 1 
6 2 1 In addition, 
7 3 2 1 1 B,(O) = 1 and 
8 4 5 4 2 B,,( 15) = 1 
9 6 10 8 4 2 1 
10 9 16 15 12 1 3 1 
11 13 25 25 27 23 10 3 1 
12 17 38 44 52 54 33 12 4 1 
13 22 55 12 96 116 87 40 16 6 1 
14 28 77 112 168 232 203 112 56 28 7 

15 35 105 168 280 435 435 280 168 10s 35 
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Inspection of the last rows of Table I (and of a similar table for production rule 
R(5; 3)) suggest that the following recursion relation holds for M >/ N - II + 1: 

0 for even ,~r. 
B,,,(m) = B,,- ,(rn - 1) + B,, ,(m) - 

(-1)” 2kfn-11 for odd yt?. 

A general proof of this relation can be found starting from the observation that the 
complement of a dependent subset is itself a dependent subset: however, the proof is 
rather lengthy and will be omitted here. Using the generating function 

one may find from the recursion relation the following expression, valid for 
Odi6n: 

+(I --y)(l --yyl ~~l~-~J--f~ (50) 

where Eqs. (30), (33), and (37) were employed to obtain N,~(,Y). For large X, the 
leading term is 

For n < M < N- 17 the numbers B,(m) depend on the production rule. The first 
nonzero value with nz # 0 appears when M= IZ + 1. Then, 6, and the elements 
indicated by the additional feedback positions of the production rule R(i?: I,!) ‘) 
from together with element b,, -t , of the sequence the first nonempty dependent scb- 
set. If the production rule has k additional feedback positions, one has 

B,,+,(k+2)= 1. (52) 

In general, for M> II any of the 2”--” subsets taken from elements b, + I) b,, .~ z ,... ~ 
b, will form a dependent subset when combined with an appropriate, possibly 
empty, selection taken from the first n elements of sequence. This leads to 

,bl 

c B,Jm) = 2.&‘-” for M>r?. (53) 

Consider now a collection of subsets of size HI, taken from a subsequence of 
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length A4 and consisting of at least one dependent subset together with all its trans- 
lated versions that lit into the subsequence. When A4 is increased by 1, at least one 
other translated version becomes available; in addition, an altogether new depen- 
dent subset (containing b, and 6, + , together with other elements) may appear. 
Therefore, if B,(m) for wz # 0 differs from zero it increases at least linearly with M: 

B u+,(m)> B,tJm)+ 1. (54) 

At which values of IM the new dependent subsets appear is completely determined 
by the production rule, but in a rather haphazard manner: in this sense, the non- 
random contributions are still random. For MS n, this probabilistic argument 
leads to the conclusion that B,q(nz) can be approximated by the binomial dis- 
tribution 

+ Sm.0. (55) 

Here, the Kronecker 6 takes the empty-set contribution into account; apart from 
this term, Eq. (55) agrees with Eqs. (51) and (53). It also agrees semi-quantitatively 
with the numbers in Table I and in similar tables for larger 12. However, especially 
for small values of m, relatively small deviations between B*,(m) and B;,(m) may 
be important, as we will see. 

From Eq. (53) it follows that, when M is larger than II, the total number of 
dependent subsets is always a factor l/(N + I) less than the total number of 
independent subsets. It is also very likely that this holds for each subset order m 
separately, except perhaps when M is only slightly larger than rz or when n? is small. 

Let us now turn to the independent subsets. For those, C,({k,)) differs for dif- 
ferent subsequences, but the product in Eqs. (46) is always equal to an element bk+, 
of the sequence at a given distance k-k, from the first index appearing in the 
product. The partial correlation functions for independent subsets are therefore 
equal to the average bit value of the subsequence of M bits starting at b,: 

(56) 

Usually, the value of k is unknown; it may be very large, such that the subsequence 
starting at 6, is far away from the original subsequence, the correlations of which 
are studied. Translationally different independent subsets only lead to different 
values of k, i.e., to the same value of k-k,. Two questions arise: how is the right- 
hand side of Eq. (56) distributed for different values of k, and how does the dis- 
tribution behave for increasing values of M? The answers will be found to depend 
again on B,(m). 

The subsequence averages (56) of maximum-length sequences have been studied 
before by Lindholm [7] and Fredricsson [ll] by means of coding theory and by 
means of numerical methods for rather short maximum-length sequences. Here, 
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their main results will be sketched and generalized without the use of coding theory, 
and the consequences for very long maximum-length sequences will be studied. 
Denoting by A the difference between the number of + l’s and the number of - i’s 
in the subsequence Ok. b,< + 1 ,..., bk + hf _ 1 we have for independent subsets 

Here, d may vary from -M to M, but for M> n its range will be more restrrcled 
due to forced cancellations; obviously, M + LI can only take even values. The f:e- 
quency with which a particular d occurs when X- varies from 1 to N is denoted bj 
ivf’l(‘( d ). General relations are 

3 =$- ,, f!z’f’(A ) = 1. i58) 

.f$‘( A ) = f’J L ,,( - n - 1 ). (‘;4\ _I 

the latter being based on a comparison with the complementary subsequence 6, ,- 8,i. 
h, + \I + , ,..., b k+vmI=bk-,. For M<rz one has 

since all N= 2” - 1 possible seeds of i7 bits occur (the Kronecker d reflects the 
absence of the seed with + l’s only). For ~$42 I\;- i: a comparison with the com- 
plementary subsequence leads to 

but subsequences of this length are of academic interest only. For intermediate 
lengths. tz < MC N- n, the relative frequencies depend in detail on the particular 
production rule used. As an example, Table II shows the nonzero values of ail 31s 
tributions, Mj’{/’ to NJ‘::‘, of the maximum-length sequence produced by R! 5; 3 ). 

We will compare J!;[‘(d) with the binomial distribution 

which holds when samples of M bits b, = k 1 are drawn from a truly random 
sequence, i.e., by means of the coin-tossing ensemble. The difference with.:/‘!tj,‘(d ) for 
M< n is negligible. The Ith moment of these distributions is 

where q is 1 or 2. Always, M + d takes even values only. 
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TABLE II 

The Distribution Nf$J(d) for Production Rule R(5; 3) 

\ 
‘.. M 

‘. 
‘\ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

A ‘\ 

4 1 3 5 5 6 5 3 2 1 1 1 

2 7 8 6 4 5 4 5 9 9 10 8 9 5 3 

0 31 16 12 10 7 6 4 6 5 8 8 10 9 10 12 16 

-2 8 8 9 12 10 13 9 6 4 4 5 6 10 12 15 
-4 2 3 3 5 5 5 7 6 6 5 6 5 3 

-6 1 1 2 2 2 1 

Note. For odd values of U the distribution follows from Eq. (50). 

By means of the formal expansion 

‘= i F(m, I, M) c b,, . . . b,,“, 
111 = 0 : 4 ) 

(64) 

coefficients F(m, I, A4) were defined by Lindholm [7], who also calculated their first 
few nonzero values. The sum over {k,} is to be taken over all subsets of order nz. 
Comparing this equation with the equivalent relation for A’+’ and noting that each 
term 6, of the extra factor 16, either does or does not annihilate one of the factors 
selected by the subset (k,j, one finds the recurrence relation 

F(m, I + 1, M) = mF(m - 1, I, M) + (M-m) F(m + 1, 1, M). (65) 

This must be solved for I3 0, with the initial condition F(m, 0, M) = 6,,,. Although 
Eq. (64) defines the Lindholm coefficients (as they will be called here) only in the 
range 0 ,< m ,< mini/, M), the recurrence relation (65) also generates coefficients out- 
side that range. However, coefficients with m <O or M > M never influence coef- 
ficients in the relevant range because of the factors m and M- WI in Eq. (65). To get 
rid of the irrelevant coefficients outside the range 0 <<nz GM we rewrite the 
recurrence relation in the form 

kf 
( > qnz, l+ 1, M) 

nf 

F(m - 1, I, M). (66) 

This recurrence relation for the quantity (E) F(m, Z, M) turns out to be equivalent 
with the recurrence relation for the Ehrenfest urn model, which was solved 
explicitly by Kac [22]. Adapting that solution to the present case and using the 
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initial condition, one finds the following generating function for the Lindholm coef- 
ficients: 

Equating like powers of z one obtains after some manipulations 

Multiplication with ),‘,!I! and summation over 1 yields yet another generating 
function: 

,zo F( m, i, M) $ = (cash j,).” ~ “‘(sinh ~3 I”‘. (53) 

It is, however, a sobering thought to realize that explicit expressions for the 
Lindholm coefficients are most easily obtained from Eq. (65) starting from 
F(‘im, 0, M) = c?,,~,~. The nonzero Lindholm coefficients with 0 < M d Id 7 are: 

f(0, 0, M) = 1, F(1, 1, M) = 1, 

F(0. 2: Mi = M. F(2.2, M) = 2, 

ft,l,3. M)=3h-2, F(3, 3, AZ) = 3!. 

FtO, 4, IV) = 3M' - ZM, f(2, 4, M) = 12,2- 16. F(4, 4, M) = 4!. 

RI, 5. M)= L5M’-30M+ 16, F(3, 5, 44) = 60M - 120, F(5. 5, Al)= j!? (70) 

F(Q. 6, Al) = 15M3 - 30&l’+ 16M, F( 2. 6. M) = 9OM’ - 300M + 272, 

F(4.6. M)=36QM-960. F(6, 6. M) = 6!. 

F( 1,7, M) = 105M3 - 42OM’ + 588M- 272, F( 3,7, M) = 63OM’ - 2940M + 3696. 

F(5, 7, M) = 2520M - 8400, F/7, 7, M)=7! 

There is no restriction on the integers M, although of course only the coefficients 
for which 0 < WI < min(l, M) holds occur in Eq. (64) and hence contribute to the ith 
moment. 

Returning now to the moments p)“)(M) we write. averaging over the complete 
sequence of N bits. 
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The index k just numbers the N different M-bit sequences. For 4 = 2, the average of 
the products of bits m the subset (k,} always vanishes, apart from the empty subset 
with m = 0. That is, the Ith moment of the coin-tossing ensemble is 

,Llj2’(M) = F(0 I h4) 9, . (72) 

Indeed, Eq. (68) for nz = 0 just gives the moments of the binomial distribution. 
For 4 = 1, we consider the numbers A,,,(m) and B,t,(rr2) of independent respec- 

tively dependent subsets {k,} or order m that can be taken from a subsequence of 
length AX These numbers obey 

Since the product of bits selected by an independent subset when summed over all 
translated versions of that subset is - 1, whereas the product of bits selected by a 
dependent subset is 1 for each translated version, we may write 

(74) 

Thus we obtain 

p!“(M)=; i F(m, I, M) (Ns l)BJm)- 
M 

m = 0 ( )I m > (75) 

an equation first derived by Lindholm [7]. 
When instead of B,,(m) the approximation &,(n2) of Eq. (55) is inserted into 

Eq. (74) the result is 

/4”(M) 
N-I-~ (N+ 1) 

% N f’(o, 1, d4) = N pj2’(M). (76) 

Unfortunately, this is too good to be true. For instance, for N-n < A4 < N the dis- 
tribution .fj&‘(d) is indeed binomial (Eq. (61)), but equal to f’,2LM(d) instead of 
f:;‘(d). The reason is that the Lindholm coefficients F(~(nz, I, M) are large for large 
M, such that relatively small deviations from zero of the quantity in square brackets 
in Eq. (75) cannot be neglected. 

Exact expressions for the moments are readily obtained from Eqs. (47) (70), and 
(75), in combination with the fact that the quantity expressed by Eq. (67) is equal 
to M’ for z= 1. The results are 
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and so on. Most of these results were already obtained by Lindholm [7]. but, in 
the derivation, a certain amount of both simplification and generalization has been 
achieved. For comparison, the even binomial moments are 

whereas the odd ones vanish. For M < N, the first three moments (with i = 0, I, 2) 
of f’i’)(J ) are almost equal to those of the binomial distribution; the condition 
M 4 N is easily obeyed in practice. For the higher moments. the comparison can 
best be made in terms of the skewness 7, and the excess y2, given by 

with ;t:21 = 0 and -;\2’ = - 2,lhl for the corresponding binomial quantities. For&i G N 
one has 

(SO) 

with B,,( 3 ) = B,,(4) = 0 when M < n. 

6. Drscussro~ AND .4PPLIC.%TION 

Lindholm [7] and Fredricsson [ ll] studied the distributron .f!,‘,‘(d) for shift 
registers with n = 23, and n = 17, respectively, for a variety of production ruies and 
with -44 up to + 500. Only for some of these production rules they found a sarisfac- 
tory behavior. Their results suggest that production rules with more than two feed- 
back bits, at irregular positions, are better. 

Production rules of the type R(n; k) lead to B,,(3) = I already for A4= II + i and 
to B,,(3) 2 M-n for MB n + 1, according to Eq. (53). Hence, undesirable con- 
tributions to the third moment occur already for relatively small values of M. Par- 
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titularly awkward results can be expected when k is small or close to n (the produG- 
tion rules R(n; k) and R(n; n -k) are conjugate). The case considered by Knuth 
[23] as a warning against the use of maximum-length sequences for random-num- 
ber generation is an example (with n = 35 and k = 2). For k or n -k small also 
B,(4) will already differ from zero when M is only slightly larger than IZ. In terms 
of the shift s and the correlation distance o(d) used in Section 3 to discuss the bit 
patterns generated from maximum-length sequences, the cases k = 1 and k = 2 lead 
to s = a( 1) = IZ and s = a(2) = n, respectively. In such cases, subsequent parts of 11 
bits from the sequence scan through adjacent rows of the triangular bit structures 
observed (see the figures in Section 3): when in terms of the sequence {a, = 0, 1) an 
excess of zeros is observed in a row of n bits, the next rr bits wili most likely show 
again an excess of zeros. This results in a certain skewness of the distribution 
,f$)(d). When neither k nor y1- k are small, adjacent rows of the triangular bit 
structures that result from choosing s = a( 1) or s = o(2) belong to widely different 
parts of the maximum-length sequence, s now being very different from M. Thus a 
much better mixing of highly correlated parts over the whole sequence and a 
greater amount of uniformity are achieved. 

Extending these arguments, one may also show that n should not be close to a 
multiple of k as, e.g., in R( 127; 63), which generates a maximum-length sequence 
but which also generates quite remarkable triangular bit structures for s=n as 
shown in Fig. 7. Recipes like k not small, nor close to n, n/2, n/3,..., etc. have been 
discussed in the literature (see, e.g., Refs. [S, 10, 131); they can be understood in 
terms of the bit patterns and higher-order correlations studied in the present paper. 

Production rules with a larger number of feedback positions tend to give rise to 
improved randomness properties, at least when these positions are sufficiently 
irregular to exclude possible mutual interferences between their effects. With a 
larger number of feedback positions the first value of M for which, say, B,(3) and 
B,,J4) differ from zero, can be large compared with n. The scattering of correlated 
parts of the sequence that would result from an increased number of feedback 
positions could indeed be a very efficient means to improve uniformity. 

Multiple-bit feedback production rules are not known for larger values of n, but 
can be found in principle from two-bit feedback production rules in the following 
manner, based on properties of maximum-length sequences described by Golomb 
[3] and Hoffmann de Visme [4]. Restricting the attention to the case where N= 
2”- 1 is prime, we note that decimating a maximum-length sequence (a,), i.e., 
replacing it by {a,,> with 4 an arbitrary integer, leads to a new sequence which is 
again of maximum length. When q is a power of 2, the new sequence is just a trans- 
lated version of the old one, but for all other values of q the new sequence is really 
different and governed by a different production rule, which can be found by solv- 
ing a set of n linear equations. An example of the situation can be found in Fig. 8. 
Since the number of different r-bit feedback production rules that generate 
maximum-length sequences with a Mersenne prime 2” - 1 as period is equal to 
(2/n). (;), where I’ (#O) is even, the new production rule is likely to have a large 
number of feedback positions. Thus, the two-bit feedback production rules given by 
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Zierler [l9] for cases where 2” - 1 is prime can in principle be transformed into 
multiple-bit feedback production rules. 

III onr opinion, future research in the generation of random numbers by means of 
maximum-length sequences should be mainly directed towards these multiple-bit 
feedback production rules. However, at present they have two disadvantages: t 
rules are not readily available, and, when known, they are more cumbersome in 
programming, whether in software or in hardware. For practical reasons, the idea 
of using two-bit feedback production rules should not be given up too soon. 

A straightforward manner to improve the randomness properties of maximum- 
length sequences is to increase the shift register length rr. This trivial statement has 
been sharpened in this paper by showing that the relative number of correlation 
functions of any order that show nonrandom behavior decreases as 2-“. The same 
holds true for the partial correlation functions of dependent subsets. ~~thou~b 
usually only shift registers with 12 2 100 are considered for the generation of random 
numbers, two-bit feedback production rules for maximum-length sequences are 
known up to y1= 9689 (see Zierler [ 191, from whose list also the examples to follow 
are drawn). 

What can be expected for the behavior of the quantities expressed in Eqs. (77) 
and (SO) when production rules such as R(607; 147), R( 1279; 2611, R(4423; 271), or 
R(9689; 4711, to mention just a few, are used? Indeed, they all have B,, ,(3) = 1 
and therefore B,(3) 3 A4 - n, according to Eq. (54). Qnly when more than two 
feedback bits are involved can the first undesirable contribution to the third 
moment be postponed until larger M. However, B,, ,(3) = 1 does not need to be 
really detrimental, due to the denominator in Eq. (80) for the skewness. 

By studying the first part of a general maximum-length sequence generated by a 
two-bit feedback production rule one may verify that, after the appearance of the 
first dependent triple (b,, bk, b, + , ) at M = n + 1, only the translated versions of this 
triple are found until A4 = 2n $ 1; then, a new dependent triple occurs, which in 
turn will have its own translated versions when M increased further. If this behavior 
would continue, the following expression would hold: 

ent[M/n] 
B,(3)= 1 (M-in). (811 

I=1 

In fact, the increase of B,(3) with M will at least initially and in average be fess 
than indicated by Eq. (81). Ultimately, according to Eq. (55), B,(3) should behave 
as M3/6(N+ 1) which is much smaller than the right-hand side of Eq. (82) until M 
reaches a value M* N -N/n. Up to that value, Eq. (81) takes more dependent triples 
into account than correspond with an appropriate share of the total number of 
dependent subsets given by Eq. (53). For M-C M* it seems that Eq. (81) provides 
an upper bound, which can be replaced by its asymptotic behavior: 

B,(3) 5 4M2/n. (821 

To pursue this argument further we need to go into stiil more detail.. We first 

581;71/2-13 
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refer to Eq. (27) and note that each element of a particular maximum-length 
sequence can be represented in a general form (i.e., without specifying its value) by 
the n-bit binary number formed by the exponents x,. Element 6, of the seed 
(1 < i < n) has a one at position i and zeros elsewhere, The binary representation of 
subsequent elements of the sequence is found by adding without carry the binary 
representations of the elements involved in the production rule; no confusion will 
arise when we use the notation b,@ b, to indicate this operation. 

Consider now the probability p, that a new dependent triple can be formed when 
the element b, is added to the preceding elements of the sequence. This new depen- 
dent triple must contain b, and b, in order to exclude translated versions of new 
dependent triples found in shorter parts of the sequence; of course, the third 
element of the triple, bk, must lie in between 1 <k <j. To see whether with b, a new 
dependent triple is formed one only has to compare the binary representation of 
6, @b, with that of each of the elements in between: b, @ 6, @I b, = 0 must hold. 
Using a computer one can in principle find the set {J) of indices <M at which 
new dependent triples occur; for two-bit feedback production rules S = rz + 1 and 
J” = 2n + 1 are the first elements of (J). The probability p, can now be written as 

(83) 

When the sequence proceeds further up to b,,, each new dependent triple found at 
j< M produces more and more translated versions; thus we get 

B,(3)= f (M-j+ 1) p,, (84) 
,=l 

The density of new dependent triples is defined by 

D,(M) = f P,. 
,=ILf-Lfl 

(85) 

The algorithm sketched above consists of a number of operations that is propor- 
tional to M2, and hence can only be carried out for rather small values of AI. The 
shift-register length n cannot be too large either, because otherwise the density of 
new dependent triples becomes small, spoiling the statistics, and also because the 
range of M values considered should cover an appreciable part of the complete 
period. Also, in order to compare their effects, different two-bit feedback production 
rules should exist at the same value of n. These requirements are met by n = 17, for 
which case Zierler and Brillhart [18] give R(17; ll), R( 17; 12), and R( 17; 14) as 
production rules for maximum-length sequences. We determined p,, that is, the set 
{J} of Eq. (83), forj, <M = 15000. Figure 9 shows the results in terms of D,(M), 
with L = 1000 as interval size. As could be expected, there is an appreciable amount 
of scatter even between the points belonging to a single production rule. 
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Frc; 9. The density D,(M) of the new dependent trtples for three different maximum-length sequen- 

ces wth period N= _ TL7 - 1. The full lrne corresponds with ,D,=J:!\‘, the dashed line with p,= l!n (se: 

Eq. (85)). 

However, there is also a general trend visible, indicated by the diagonal straight 
line. This line is not drawn arbitrarily, but results in Eq. (85) when the choice 

p, = j/N (86) 

is made for the probability, which now starts to deserve its name. This choice is 
completely logical: if b, and 0, are given, there is within the complete period of the 
sequence always one element bk such that b, 06, is equal to b,; the probability that 
b, lies between b, and b,, thus forming a new dependent triple at b,, is indeed .j::lt’. 
When this choice for p, is inserted in Eq. (84) then in fact the binomial 
approximation to B,&,(3) of Eq. (55) is found. The upper bound (82) is obtained by 
putting p, = l,!‘rz in Eq. (84); the dashed line is the corresponding behavior of 
D,(M). 

It seems that a rather consistent picture emerges. We have obtained similar 
results for a number of production rules with n = 22 and n = 31, but the statistics 
gets poorer because of the factor l/N in Eq. (86) which requires much larger vaiues 
for M and L when 17 increases. The relative scatter of the points representing D,(t) 
diminishes, but the computer effort needed grows steeply because of the hp charac- 
ter of the algorithm for finding new dependent subsets. 

When the upper bound of Eq. (82) is inserted into Eq. (80) one finds for the 
skewness 

1’1” 5 3W~‘/ll. (87) 

For I?-- - 20 this implies a rather unsatisfactory behavior already for izf -Z 50. even 
when it is taken into account that the upper bound is rather weak, as is the case in 
Fig. 9. This agrees with the results obtained by Lindholm [7] and Fredricsson E: 113 
for such values of n with 50 5 M 4 500. Neither of the production rules featured in 
Fig. 9 have very good randomness properties; the first contributions to D,(M! 
arrive too early, in particular for R(17; 12) where the position of the additional 
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feedback bit is almost equal to 2n/3. Because of the cumulative effects on ~,,(3) 
such early contributions are real culprits. However, for larger n the situation 
improves considerably: the upper bound goes down, and M can become larger, 
which smoothes out the influence of regions with high and with low densities of 
new dependent triples. (In passing by we remark that the present arguments can in 
principle be extended to cover also B.J4) and the fourth moment.) 

TO test the above ideas we have sampled the distributionfjh)(d) for a number of 
production rules R(n; k) with y1< 100 and k not close to 0, FZ, or a simple fraction of 
n. Starting from a given initial configuration of n bits we first generated M further 
elements of the sequence and determined (and stored) A, the difference between the 
numbers of zeros and ones in these M bits. Then the sequence was generated for a 
further 11 bits, but also the IZ times retarded sequence was generated; this saves 
memory space (only 2n bits need to be kept instead of M+ n), while it enables one 
to correct d for the new bits that enter and the old bits that leave the subsequence. 
The value of d reached after this procedure was again stored. Repeating this 
process t times, and thereby generating a total number of m+ M bits of the 
maximum-length sequence, we determined the histogramftd) which is a sample of 
size t drawn from the true distribution f!&)(A). Since subsequent values of 4 are 
taken from partly overlapping subsequences they are not independent; the effective 
number of independent samples is t’ = m/l21 (even these are not truly independent, 
of course). The first four moments of the histogram obtained were calculated. In 
order to facilitate the comparison with the normal distribution to which the 
binomial distribution f’,:)(d) is equivalent for large M, the scales of the histogram 
were manipulated: the variable A’ = Ajil4’ ‘2 was introduced and a number of inter- 
vals of the original histogram were collected in a single interval of the scaled 
histogram in such a way that the range -2 cd’ < 3 would cover ~40 intervals. 

In this manner a large number of production rules with n 2 100 were studied. In 
general, the distributions obtained were quite satisfactory, although for large M the 
effective sample sizes t’ that we employed were not large enough. The dependence 
on the initial conditions was observed to be weak. We give two typical examples. 
Figure 10 shows the distribution found for R(127; l), which is conjugate to 
(127; 126), with M= 2000 and t = 20,000. By scanning through subsequent rows of 
triangles of zeros this production rule tends to overconcentrate zeros, thereby lifting 
the wing of the distribution for positive d. That wing extends also beyond 
A = 2M’ ‘“; the opposite is true for the other wing (where no dots are shown, no 
values of A were found). The values obtained for skewness and excess are y1 = 0.523 
and yz =0.655, both higher than is acceptable, but lower than we observed for 
production rules of the type R(n: n - 1) with smaller II. En Fig. 11 the distribution 
for R( 1279; 216) is depicted, with M= 32,000 and I = 20,000. Skewness and excess 
are now 7, = 0.175 and 1.‘2=0.199. 

Similar results as for R(1279; 216) were obtained for R(127: 112), R(607; 147), 
R(9689; 9218), and a number of other production rules, but in particular for the 
larger n values the statistics of the data is not sufficient. Also, larger values of M 
should be considered, in order to be sure that no regions with an exceptionally high 
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FIG. 10 The scaled histogram f(d’) obtained from production rule X( 127; 116j for subseqoences of 
length M = 1000. Units are such that the area under the full curve, which represents the normal dis- 

tributlon. is equal to 1. The First four moments of the unscaled histogram are: JL, = 1.404, 
~1~ = 1 919 x 103. ILL = 4.395 x lo”, and p., = 1.346 x 10’. The effective sample sxe is [’ = tn;M = !2?0. 

density of new dependent triples occur. However, above some value of .&I the 
cumulative effects on B.M(3) of those regions should be cancelled by the effects due 
to low-density regions. 

We close this section with three remarks. The first one concerns the second 

moment of .f\\‘( d ). This distribution is (apart from the Kronecker-?j contribution) 
exactly binomial for M d n; but beyond that value the binomial distribution just 
proceeds to spread its wings without restriction while f:,l,‘(d) cannot follow suit 
completely. This is most conspicuous for small values of 12; see, e.g., Table II, For 
larger n, the bulk of the distributions is concentrated at small values of 4jM, and 
their second moments remain almost equal for a larger range of M. However, the 
second moment of f\&‘(d ) does not increase indefinitely but reaches a maximum of 
SN at M = +N (the correction terms M’/N in Eqs. (77) now become important j; 
when M approaches N the other binomial distribution, that of Eq. (61), must be 
met. When M- 1 y 2N, the distributionfj$J(d) is indeed far from binomial but behaves 
rather wildly, as one may discover for rz 5 30. Somewhere in the range II < M-C $N 
the distribution f!:>(A) must definitively lose its ability to imitate the proper 
binomial distribution, but when n is larger than about 100 the second moments 
start to deviate only appreciably when M attains values of order N/n, far beyond 
reach. 

Second, in the above little was said about the consequences of correlations in 
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Fig. 11. The same as Fig. 10, but now for R(1297; 216) with M=32.000. The moments of the 
unscaled histogram are /I, = 1.490, p’z = 3.295 x IO“. pL3 = 1.049 x IO’, and ,u~ = 3.473 x 109. The effective 

sample size is 1’ = trz!M = 8 11. 

maximum-length sequences for the properties of the q-bit random numbers extrac- 
ted from them. We will restrict our attention to the case in which subsequent parts 
of q bits are taken from the sequence to form subsequent random numbers. Depen- 
dent subsets of size 172 in the sequence that would coincide with the most-significant 
bits of more or less neighboring random numbers are of course undesirable, but it 
follows from our considerations that the probability for this happening becomes 
extremely small even when 2-bit feedback production rules are used, at least when 
the precaution is taken to choose q not equal or close to a simple fraction of n. If t 
is the largest number for which rq is less than IZ, a sequence of r random numbers is 
completely independent. The most significant bit of the random numbers is taken 
from a decimated version of the original sequence, which is again a maximum- 
length sequence; if q is not a power of 2, the decimated sequence will probably 
belong to a multiple-bit feedback production rule, with (again probably) improved 
randomness properties. In any case, the most significant bits of IZ subsequent ran- 
dom numbers then are completely independent. Of vital importance, we found 
strong indications that much longer subsequences behave “normally” when n 
increases. Care must be taken though, as we learned when we inadvertently used 
R( 127; 15) to generate 32-bit random numbers in an Ising model simulation where 
the sites of a quadratic lattice with dimensions that are a power of 2 were visited 
sequentially (see Ref. [ 11). The coincidence of so many powers or close powers of 2 
was too much, and we found small but persistent deviations between our results 
and known exact data. Preliminary and somewhat superficial statistical tests of the 
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usual type gave no reason to mistrust R( 127; 15). This is. a reminder to test the ran- 
dom-number generator one uses against known data for the particular simulation 
problem that one wants to study; only then are the correlations inherent in the 
problem present and can a possible interference with correlations in the random- 
number generator be detected. 

Third, a few words about the actual random-number generator now in use in the 
DISP, the Delft Ising System Processor [ 11~ When we discovered the small dis- 
agreement with exact data, we changed over to visiting rhe lattice sites randomly; tc 
have this possibility was one of our design requirements, but using it reduced the 
speed of the machine since the same random-number generator now had to provide 

two random numbers at each Monte Carlo step, one for the position and one for 
comparison with a Boltzmann probability. Although in principle new undesirable 
correlations could in this way have entered our problem the deviations vanished. Ir, 
the DISP it is now standard practice to select lattice sites randomly, for which the 
old random-number generator is used. For the Monte-Carlo process proper a more 
powerful and programmable random-number generator was built and installed, 
based again on two-bit feedback production rules. The length 1; of the shift register 
and the position of the additional feedback bit can be chosen freely up to n = 9689 
and even larger: these numbers are fed into the machine in the initialization phase. 
together with a varying collection of ?z seed bits. Since the installation of this ran- 
dom-number generator, three years ago, no reason to mistrust its properties arose, 
Usually, the production rule R(9689; 471) is adopted. but occasionally runs are 
repeated with a different production ruie for ?I> OK@ taken from Zierler’s list LIP]. 

7. CONCLUSIONS 

A general description of the properties of maximum-length sequences in terms of 
the compiete hierarchy of correlation functions is possible. New and detailed 
arguments have been found to support the somewhat trivial statement that produc- 
tion rules which generate sequences of extreme length in general have much better 
randomness properties. There are strong indications that such maximum-length 
sequences can be used as a reliable source of random numbers, if care is taken LO 
avoid sequences in which correlated parts are not uniformly distributed. 

For future research in the generation of random numbers by means of linear- 
feedback production rules two directions seem to be particularly interestmg. The 
first one is to study multiple-bit feedback production rules: can they be made 
available for large shift registers, and do they indeed have the improved random- 
ness properties that compensate their obvious disadvantages? The second one is to 
improve the statistics of the data found for sequences of extreme length, by means 
of efficient programming and possibly even the construction of dedicated hardware. 
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